
Adept automatic differentiation library for C++:
User guide

Robin J. Hogan, University of Reading, UK

Document version 1.1 (May 2015) applicable to Adept version 1.1

Contents
1 Introduction... 2
2 What functionality does Adept provide?... 2
3 Installing Adept and compiling your code to use it .. 3

3.1 Unix-like platforms.. 3
3.2 Non-Unix platforms, and compiling Adept applications without linking to an external library 5

4 Code preparation... 5
5 Applying reverse-mode differentiation ... 6

5.1 Set-up stack to record derivative information.. 6
5.2 Initialize independent variables and start recording .. 7
5.3 Perform calculations to be differentiated... 7
5.4 Perform reverse-mode differentiation.. 7
5.5 Extract the final gradients .. 8

6 Computing Jacobian matrices ... 8
7 Real-world usage: interfacing Adept to a minimization library.. 9
8 Calling an algorithm with and without automatic differentiation from the same program 11

8.1 Function templates... 12
8.2 Pausable recording... 12
8.3 Multiple object files per source file ... 13

9 Interfacing with software containing hand-coded Jacobians .. 14
10 Parallelizing Adept programs.. 15
11 Tips for the best performance ... 16
12 Member functions of the Stack class ... 16
13 Member functions of the adouble object .. 19
14 Exceptions thrown by the Adept library.. 20
15 Configuring the behaviour of Adept.. 21

15.1 Modifications not requiring a library recompile.. 21
15.2 Modifications requiring a library recompile .. 22

16 Frequently asked questions ... 23
17 License for Adept software ... 25

This document is copyright c© Robin J. Hogan 2013–2015. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. This license
may be found at http://www.gnu.org/copyleft/fdl.html. As an exception, no copyright is asserted for the code fragments in this
document (indicated in the text with a light-grey background); these code fragments are in the Public Domain and may be copied, modified and
distributed without restriction.

If you have any queries about Adept that are not answered by this document or by the information on the Adept web site (http://www.
met.reading.ac.uk/clouds/adept/) then please email me at r.j.hogan@reading.ac.uk.

1

http://www.gnu.org/copyleft/fdl.html
http://www.met.reading.ac.uk/clouds/adept/
http://www.met.reading.ac.uk/clouds/adept/
mailto:r.j.hogan@reading.ac.uk

1. Introduction 2

1 Introduction

Adept (Automatic Differentiation using Expression Templates) is a software library that enables algorithms writ-
ten in C and C++ to be automatically differentiated. It uses an operator overloading approach, so very little code
modification is required. Differentiation can be performed in forward mode (the “tangent-linear” computation),
reverse mode (the “adjoint” computation), or the full Jacobian matrix can be computed. This behaviour is com-
mon to several other libraries, namely ADOL-C (Griewank et al., 1996), CppAD (Bell, 2007) and Sacado (Gay,
2005), but the use of expression templates, an efficient way to store the differential information and several other
optimizations mean that reverse-mode differentiation tends to be significantly faster and use less memory. In fact,
Adept is also usually only a little slower than an adjoint code you might write by hand, but immeasurably faster in
terms of user time; adjoint coding is very time consuming and error-prone. For technical details of how it works,
benchmark results and further discussion of the factors affecting its speed when applied to a particular code, see
Hogan (2014).

This user guide describes how to apply the Adept software library to your code, and many of the examples
map on to those in the test directory of the Adept software package. Section 2 describes the functionality that the
library provides. Section 3 outlines how to install it on your system and how to compile your own code to use it.
Section 4 describes how to prepare your code for automatic differentiation, and section 5 describes how to perform
forward- and reverse-mode automatic differentiation on this code. Section 6 describes how to compute Jacobian
matrices. Section 7 provides a detailed description of how to interface an algorithm implemented using Adept with
a third-party minimization library. Section 8 describes how to call a function both with and without automatic
differentiation from within the same program. Section 9 describes how to interface to software modules that
compute their own Jacobians. Section 11 provides some tips for getting the best performance from Adept. Section
12 describes the user-oriented member functions of the Stack class that contains the differential information and
section 13 describes the member functions of the “active” double-precision type adouble. Section 14 describes
the exceptions that can be thrown by some Adept functions. Section 15 describes how to configure the behaviour of
Adept by defining certain preprocessor variables, and section 16 answers some frequently asked questions. Finally,
section 17 describes the license terms.

2 What functionality does Adept provide?

Adept provides the following functionality:

Full Jacobian matrix Given the non-linear function y = f (x) relating vector y to vector x coded in C or C++,
after a little code modification Adept can compute the Jacobian matrix H = ∂y/x, where the element at
row i and column j of H is Hi, j = ∂yi/∂x j. This matrix will be computed much more rapidly and accurately
than if you simply recompute the function multiple times, each time perturbing a different element of x by
a small amount. The Jacobian matrix is used in the Gauss-Newton and Levenberg-Marquardt minimization
algorithms.

Reverse-mode differentiation This is a key component in optimization problems where a non-linear function
needs to be minimized but the state vector x is too large for it to make sense to compute the full Jacobian
matrix. Atmospheric data assimilation is the canonical example in the field of meteorology. Given a nonlin-
ear function J(x) relating the scalar to be minimized J to vector x, Adept will compute the vector of adjoints
∂J/∂x. Moreover, for a component of the code that may be expressed as a multi-dimensional non-linear
function y = f (x), Adept can compute ∂J/∂x if it is provided with the vector of input adjoints ∂J/∂y. In
this case, ∂J/∂x is equal to the matrix-vector product HT∂J/∂y, but it is computed here without computing
the full Jacobian matrix H. The vector ∂J/∂x may then be used in a quasi-Newton minimization scheme
(e.g., Liu and Nocedal, 1989).

Forward-mode differentiation Given the non-linear function y = f (x) and a vector of perturbations δx, Adept
will compute the corresponding vector δy arising from a linearization of the function f . Formally, δy is
equal to the matrix-vector product Hδx, but it is computed here without computing the full Jacobian matrix
H. Note that Adept is designed for the reverse case, so might not be as fast or economical in memory in

3. Installing Adept and compiling your code to use it 3

the forward mode as libraries written especially for that purpose (although Hogan, 2013, showed that it was
competitive).

Adept can currently automatically differentiate the standard mathematical operators +, -, * and /, as well as their
assignment versions +=, -=, *= and /=. It supports the mathematical functions sqrt, exp, log, log10, sin, cos,
tan, asin, acos, atan, sinh, cosh, tanh, abs and pow, and since version 1.1 also the functions asinh, acosh,
atanh, expm1, log1p, cbrt, erf, erfc, exp2 and log2. The “active” variables can take part in comparison
operations ==, !=, >, <, >= and <=, as well as the diagnostic functions isfinite, isinf and isnan.

Note that at present Adept is missing some functionality that you may require:

• Differentiation is first-order only: it cannot directly compute higher-order derivatives such as the Hessian
matrix.

• It has limited support for complex numbers; no support for mathematical functions of complex numbers, and
expressions involving operations (addition, subtraction, multiplication and division) on complex numbers are
not optimized.

• All code to be differentiated in a single program must use the same precision. By default this is double
precision, although the library may be recompiled to use single precision or quadruple precision (the latter
only if supported by your compiler).

• Your code should operate on variables individually: they can be stored in C-style arrays or std::vector
types, but if you use containers that allow operations on entire arrays, such as the std::valarray type, then
some array-wise functionality (such as mathematical functions applied to the whole array and multiplying
an array of active variables by an ordinary non-active scalar) will not work.

• It can be applied to C and C++ only; Adept could not be written in Fortran since the language provides no
template capability.

It is hoped that future versions will remedy these limitations (and maybe even a future version of Fortran will
support templates).

3 Installing Adept and compiling your code to use it

Adept should be compatible with any C++98 compliant compiler, although most of the testing has been specifically
on Linux with the GNU C++ compiler. The code is built with the help of a configure shell script generated by
GNU autotools. If you are on a non-Unix system (e.g. Windows) and cannot use shell scripts, see section 3.2.

3.1 Unix-like platforms

On a Unix-like system, do the following:

1. Unpack the package (tar xvfz adept-1.1.tar.gz on Linux) and cd to the directory adept-1.1.

2. Configure the build using the configure script (the use of a configure script generated by autoconf

was introduced in Adept version 1.1). The most basic method is to just run

./configure

More likely you will wish to compile with a higher level of optimization than the default (which is -O2),
achieved by setting the environment variable CXXFLAGS. You may also wish to specify the root directory of
the installation, say to /opt/local. These may be done by running instead

./configure "CXXFLAGS=-g -O3" --prefix=/opt/local

3. Installing Adept and compiling your code to use it 4

The -g option to CXXFLAGS ensures debugging information is stored. You can see the options available
by running ./configure --help. You can turn-off OpenMP parallelization in the computation of Jaco-
bian matrices using --disable-openmp. After compiling the library you may optionally compile a test
program that interfaces to the GNU Scientific Library, or a benchmarking program that compares the per-
formance to other automatic differentiation tools ADOL-C, CppAD and Sacado. If these libraries are in a
non-standard directory then further environment variables need to be specified in the same way as the exam-
ple above. For example, you can specify an additional directory to search for header files with something
like CPPFLAGS=-I/opt/local/include or an additional directory to search for static and shared libraries
with something like LDFLAGS=-L/opt/local/lib. See also section 15 for ways to make more fundamen-
tal changes to the configuration of Adept. The output from the configure script provides information on
aspects of how Adept and the test programs will be built.

3. Build Adept by running
make

This will create the static and shared libraries in adept/.libs.

4. Install the header file include/adept.h and the static and shared libraries by running
make install

If this is to be installed to a system directory, you will need to log in as the super-user first.

5. Build the example and benchmarking programs by running
make check

Note that this may be done without first installing the Adept library to a system directory. This compiles the
following programs in the test directory:

• test misc: the trivial example from Hogan (2014);

• test adept: compares the results of numerical and automatic differentiation;

• test with without ad: does the same but compiling the same source code both with and without
automatic differentiation (see test/Makefile for how this is done),

• test radiances: demonstrates the interfacing of Adept with code that provides its own Jacobian;

• test gsl interface: implementation of a simple minimization problem using the L-BFGS mini-
mizer in the GSL library;

• test checkpoint: demonstration of checkpointing, a useful technique for large codes;

• test thread safe: demonstration of the use of multiple OpenMP threads, each with its own instance
of an Adept stack;

• test no lib: demonstrates the use of the adept source.h header file that means there is no need
to link to the Adept library in order to create an executable.

In the benchmark directory it compiles autodiff benchmark for comparing the speed of the differentia-
tion of two advection algorithms using Adept, ADOL-C, CppAD and Sacado (or whichever subset of these
tools you have on your system). It also compiles animate for visualizing at a terminal what the algorithms
are doing. Further information on running these programs can be found in the README files in the relevant di-
rectories. Note that despite the implication, “make check” does not automatically run any of the programs
it makes to check they function correctly.

To compile source files that use the Adept library, you need to make sure that adept.h is in your in-
clude path. If this file is located in a directory that is not in the default include path, add something like
-I/home/fred/include to the compiler command line. At the linking stage, add -ladept to the command
line to tell the linker to look for the libadept.a static library, or equivalent shared library. If this file is in a
non-standard location, also add something like -L/home/fred/lib before the -ladept argument to specify its
location. Section 8.3 provdes an example Makefile for compiling code that uses the Adept library. Read on to see
how you can compile an Adept application without needing to link to a library.

4. Code preparation 5

3.2 Non-Unix platforms, and compiling Adept applications without linking to an external
library

Most of the difficulty in maintaining software that can compile on multiple platforms arises from the different
ways of compiling software libraries, and the need to test on compilers that may be proprietary. Unfortunately I
don’t have the time to maintain versions of Adept that build specifically on Microsoft Windows or other non-Unix
platforms. However, Adept is a fairly small library amounting to only around 3,400 lines of code, of which around
2,300 are in the adept.h header file and around 1,100 in the library source files. Therefore I have provided a very
simple way to build an Adept application without the need to link to a pre-compiled Adept library. In one of your
source files and one only, add this near the top:

#include "adept_source.h"

Typically you would include this in the source file containing the main function. This header file is simply a
concatenation of the Adept library source files, so when you compile a file that includes it, you compile in all
the functionally of the Adept library. All other source files in your application should include the adept.h

header file as normal. When you link all your object files together to make an executable, the Adept function-
ality will be built in, even though you did not link to an external Adept library. A demonstration of this is in the
test/test no lib.cpp source file, which needs to be compiled together with test/algorithm.cpp to make
an executable. It is hoped that this feature will make it easy to use Adept on non-Unix platforms, although of
course this feature works just as well on Unix-like platforms as well.

A further point to note is that, under the terms of the license, it is permitted to simply copy adept.h and
adept source.h into an include directory in your software package and use it from there in both binary and
source-code releases of your software. This means that users do not need to install Adept separately before they
use your software. However, if you do this then remember that your use of these files must comply with the terms
of the Apache License, Version 2.0; see section 17 for details.

4 Code preparation

If you have used ADOL-C, CppAD or Sacado then you will already be familiar with what is involved in applying
an operator-overloading automatic differentiation package to your code. The user interface to Adept differs from
these only in the detail. It is assumed that you have an algorithm written in C or C++ that you wish to differentiate.
This section deals with the modifications needed to your code, while section 5 describes the small additional
amount of code you need to write to differentiate it.

In all source files containing code to be differentiated, you need to include the adept.h header file and
import the adouble type from the adept namespace. Assuming your code uses double precision, you then search
and replace double with the “active” equivalent adouble, but doing this only for those variables whose values
depend on the independent input variables. If you wish to use a different precision, or to enable your code to
be easily recompiled to use different precisions, then you may alternatively use the generic Real type from the
adept namespace with its active equivalent aReal. Section 15 describes how to configure these types to represent
single, double or quadruple precision, but be aware that accumulation of round-off error can make the accuracy of
derivatives computed using single precision insufficient for minimization algorithms. For now we consider only
double precision.

Consider the following contrived algorithm from Hogan (2014) that takes two inputs and returns one output:

double algorithm(const double x[2]) {
double y = 4.0;
double s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

The modified code would look like this:

#include "adept.h"
using adept::adouble;

5. Applying reverse-mode differentiation 6

adouble algorithm(const adouble x[2]) {
adouble y = 4.0;
adouble s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

Changes like this need to be done in all source files that form part of an algorithm to be differentiated.
If you need to access the real number underlying an adouble variable a, for example in order to use it as

an argument to the fprintf function, then use a.value() or adept::value(a). Any mathematical operations
performed on this real number will not be differentiated.

You may use adouble as the template argument of a Standard Template Library (STL) vector type (i.e.
std::vector<adouble>), or indeed any container where you access individual elements one by one. For types
allowing mathematical operations on the whole object, such as the STL complex and valarray types, you will
find that although you can multiply one std::complex<adouble> or std::valarray<adouble> object by
another, mathematical functions (exp, sin etc.) will not work when applied to whole objects, and neither will
some simple operations such as multiplying these types by an ordinary (non-active) double variable. Moreover,
the performance is not great because expressions cannot be fully optimized when in these containers. It is hoped
that a future version of Adept will include its own complex and vector types that overcome these limitations.

5 Applying reverse-mode differentiation

Suppose you wanted to create a version of algorithm that returned not only the result but also the gradient of the
result with respect to its inputs, you would do this:

#include "adept.h"
double algorithm_and_gradient(

const double x_val[2], // Input values
double dy_dx[2]) { // Output gradients

adept::Stack stack, // Where the derivative information is stored
using adept::adouble; // Import adouble from adept
adouble x[2] = {x_val[0], x_val[1]}; // Initialize active input variables
stack.new_recording(); // Start recording
adouble y = algorithm(x); // Call version overloaded for adouble args
y.set_gradient(1.0); // Defines y as the objective function
stack.compute_adjoint(); // Run the adjoint algorithm
dy_dx[0] = x[0].get_gradient(); // Store the first gradient
dy_dx[1] = x[1].get_gradient(); // Store the second gradient
return y.value(); // Return the result of the simple computation

}

The component parts of this function are in a specific order, and if this order is violated then the code will not run
correctly.

5.1 Set-up stack to record derivative information

adept::Stack stack;

The Stack object is where the differential version of the algorithm will be stored. When initialized, it makes itself
accessible to subsequent statements via a global variable, but using thread-local storage to ensure thread safety.
It must be initialized before the first adouble object is instantiated, because such an instantiation registers the
adouble object with the currently active stack. Otherwise the code will crash with a segmentation fault.

In the example here, the Stack object is local to the scope of the function. If another Stack object had
been initialized by the calling function and so was active at the point of entry to the function, then the local Stack
object would throw an adept::stack already active exception (see Test 3 described at test/README in the
Adept package if you want to use multiple Stack objects in the same program). A disadvantage of local Stack

5. Applying reverse-mode differentiation 7

objects is that the memory it uses must be reallocated each time the function is called. This can be overcome in
several ways:
• Declare the Stack object to be static, which means that it will persist between function calls. This has

the disadvantage that you won’t be able to use other Stack objects in the program without deactivating this
one first (see Test 3 in the Adept package, referred to above, for how to do this).

• Initialize Stack in the main body of the program and pass a reference to it to the
algorithm and gradient function, so that it does not go out of scope between calls.

• Put it in a class so that it is accessible to member functions; this approach is demonstrated in section 7.

5.2 Initialize independent variables and start recording

adouble x[2] = {x_val[0], x_val[1]};
stack.new_recording();

The first line here simply copies the input values to the algorithm into adouble variables. These are the inde-
pendent variables, but note that there is no obligation for these to be stored as one array (as in CppAD), and for
forward- and reverse-mode automatic differentiation you do not need to tell Adept explicitly via a function call
which variables are the independent ones. The next line clears all differential statements from the stack so that it
is ready for a new recording of differential information.

Note that the first line here actually stores two differential statements, δx[0]=0 and δx[1]=0, which are
immediately cleared by the new recording function call. To avoid the small overhead of storing redundant
information on the stack, we could replace the first line with

x[0].set_value(x_val[0]);
x[1].set_value(x_val[1]);

or

adept::set_values(x, 2, x_val);

which have the effect of setting the values of x without storing the equivalent differential statements.
Previous users of Adept version 0.9 should note that since version 1.0, the new recording function re-

places the start function call, which had to be put before the independent variables were initialized. The problem
with this was that the independent variables had to be initialized with the set value or set values functions,
otherwise the gradients coming out of the automatic differentiation would all be zero. Since it was easy to forget
this, new recording was introduced to allow the independent variables to be assigned in the normal way using the
assignment operator (=). But don’t just replace start in your version-0.9-compatible code with new recording;
the latter must appear after the independent variables have been initialized.

5.3 Perform calculations to be differentiated

adouble y = algorithm(x);

The algorithm is called, and behind the scenes the equivalent differential statement for every mathematical state-
ment is stored in the stack. The result of the forward calculation is stored in y, known as a dependent variable.
This example has one dependent variable, but any number is allowed, and they could be returned in another way,
e.g. by passing a non-constant array to algorithm that is filled with the final values when the function returns.

5.4 Perform reverse-mode differentiation

y.set_gradient(1.0);
stack.compute_adjoint();

The first line sets the initial gradient (or adjoint) of y. In this example, we want the output gradients to be the
derivatives of y with respect to each of the independent variables; to achieve this, the initial gradient of y must be
unity.

More generally, if y was only an intermediate value in the computation of objective function J, then for the
outputs of the function to be the derivatives of J with respect to each of the independent variables, we would need

6. Computing Jacobian matrices 8

to set the gradient of y to ∂J/∂y. In the case of multiple intermediate values, a separate call to set gradient is
needed for each intermediate value. If y was an array of length n then the gradient of each element could be set to
the values in a double array y ad using

adept::set_gradients(y, n, y_ad);

The compute adjoint() member function of stack performs the adjoint calculation, sweeping in re-
verse through the differential statements stored on the stack. Note that this must be preceded by at least
one set gradient or set gradients call, since the first such call initializes the list of gradients for
compute adjoint() to act on. Otherwise, compute adjoint() will throw a gradients not initialized

exception.

5.5 Extract the final gradients

dy_dx[0] = x[0].get_gradient();
dy_dx[1] = x[1].get_gradient();

These lines simply extract the gradients of the objective function with respect to the two independent variables.
Alternatively we could have extracted them simultaneously using

adept::get_gradients(x, 2, dy_dx);

To do forward-mode differentiation in this example would involve setting the initial gradients of x instead
of y, calling the member function compute tangent linear() instead of compute adjoint(), and extracting
the final gradients from y instead of x.

6 Computing Jacobian matrices

Until now we have considered a function with two inputs and one output. Consider the following more general
function whose declaration is

void algorithm2(int n, const adouble* x, int m, adouble* y);

where x points to the n independent (input) variables and y points to the m dependent (output) variables. The
following function would return the full Jacobian matrix:

#include <vector>
#include "adept.h"
void algorithm2_jacobian(

int n, // Number of input values
const double* x_val, // Input values
int m, // Number of output values
double* y_val, // Output values
double* jac) { // Output Jacobian matrix

using adept::adouble; // Import Stack and adouble from adept
adept::Stack stack; // Where the derivative information is stored
std::vector<adouble> x(n); // Vector of active input variables
adept::set_values(&x[0], n, x_val); // Initialize adouble inputs
adept.new_recording(); // Start recording
std::vector<adouble> y(m); // Create vector of active output variables
algorithm2(n, &x[0], m, &y[0]); // Run algorithm
stack.independent(&x[0], n); // Identify independent variables
stack.dependent(&y[0], m); // Identify dependent variables
stack.jacobian(jac); // Compute & store Jacobian in jac

}

Note that:

• The independent member function of stack is used to identify the independent variables, i.e. the variables
that the derivatives in the Jacobian matrix will be with respect to. In this example there are n independent
variables located together in memory and so can be identified all at once. Multiple calls are possible to
identify further independent variables. To identify a single independent variable, call independent with
just one argument, the independent variable (not as a pointer).

7. Real-world usage: interfacing Adept to a minimization library 9

• The dependent member function of stack identifies the dependent variables, and its usage is identical to
independent.

• The memory provided to store the Jacobian matrix (pointed to by jac) must be a one-dimensional array of
size m×n, where m is the number of dependent variables and n is the number of independent variables.

• The resulting matrix is stored in the sense of the index representing the dependent variables varying fastest
(column-major order).

• Internally, the Jacobian calculation is performed by multiple forward or reverse passes, whichever would be
faster (dependent on the numbers of independent and dependent variables).

• The use of std::vector<adouble> rather than new adouble[n] ensures no memory leaks in the case
of an exception being thrown, since the memory associated with x and y will be automatically deallocated
when they go out of scope.

7 Real-world usage: interfacing Adept to a minimization library

Suppose we want to find the vector x that minimizes an objective function J(x) that consists of a large algorithm
coded using the Adept library and encapsulated within a C++ class. In this section we illustrate how it may be
interfaced to a third-party minimization algorithm with a C-style interface, specifically the free one in the GNU
Scientific Library. The full working version of this example, using the N-dimensional Rosenbrock banana function
as the function to be minimized, is “Test 4” in the test directory of the Adept software package. The interface to
the algorithm is as follows:

#include <vector>
#include "adept.h"
using adept::adouble;
class State {
public:
// Construct a state with n state variables
State(int n) { active_x_.resize(n); x_.resize(n); }
// Minimize the function, returning true if minimization successful, false otherwise
bool minimize();
// Get copy of state variables after minimization
void x(std::vector<double>& x_out) const;
// For input state variables x, compute the function J(x) and return it
double calc_function_value(const double* x);
// For input state variables x, compute function and put its gradient in dJ_dx
double calc_function_value_and_gradient(const double* x, double* dJ_dx);
// Return the size of the state vector
unsigned int nx() const { return active_x_.size(); }

protected:
// Active version: the algorithm is contained in the definition of this function
adouble calc_function_value(const adouble* x);
// DATA
adept::Stack stack_; // Adept stack object
std::vector<adouble> active_x_; // Active state variables

};

The algorithm itself is contained in the definition of calc function value(const adouble*), which is im-
plemented using adouble variables (following the rules in section 4). However, the public interface to the class
uses only standard double types, so the use of Adept is hidden to users of the class. Of course, a complicated
algorithm may be implemented in terms of multiple classes that do exchange data via adouble objects. We will be
using a quasi-Newton minimization algorithm that calls the algorithm many times with trial vectors x, and for each
call may request not only the value of the function, but also its gradient with respect to x. Thus the public interface
provides calc function value(const double*) and calc function value and gradient, which could
be implemented as follows:

7. Real-world usage: interfacing Adept to a minimization library 10

double State::calc_function_value(const double* x) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
return value(calc_function_value(&active_x_[0]));

}

double State::calc_function_value_and_gradient(const double* x, double* dJ_dx) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
adouble J = calc_function_value(&active_x_[0]);
J.set_gradient(1.0);
stack_.compute_adjoint();
adept::get_gradients(&active_x_[0], nx(), dJ_dx);
return value(J);

}

The first function simply copies the double inputs into an adouble vector and runs the version of
calc function value for adouble arguments. Obviously there is an inefficiency here in that gradients are
recorded that are then not used, and this function would be typically 2.5–3 times slower than an implementation
of the algorithm that did not store gradients. Section 8 describes two ways to overcome this problem. The second
function above implements reverse-mode automatic differentiation as described in section 5.

The minimize member function could be implemented using GSL as follows:
#include <iostream>
#include <gsl/gsl_multimin.h>

bool State::minimize() {
// Minimizer settings
const double initial_step_size = 0.01;
const double line_search_tolerance = 1.0e-4;
const double converged_gradient_norm = 1.0e-3;
// Use the "limited-memory BFGS" quasi-Newton minimizer
const gsl_multimin_fdfminimizer_type* minimizer_type

= gsl_multimin_fdfminimizer_vector_bfgs2;

// Declare and populate structure containing function pointers
gsl_multimin_function_fdf my_function;
my_function.n = nx();
my_function.f = my_function_value;
my_function.df = my_function_gradient;
my_function.fdf = my_function_value_and_gradient;
my_function.params = reinterpret_cast<void*>(this);

// Set initial state variables using GSL’s vector type
gsl_vector *x;
x = gsl_vector_alloc(nx());
for (unsigned int i = 0; i < nx(); ++i) gsl_vector_set(x, i, 1.0);

// Configure the minimizer
gsl_multimin_fdfminimizer* minimizer

= gsl_multimin_fdfminimizer_alloc(minimizer_type, nx());
gsl_multimin_fdfminimizer_set(minimizer, &my_function, x,

initial_step_size, line_search_tolerance);
// Begin loop
size_t iter = 0;
int status;
do {

++iter;
// Perform one iteration
status = gsl_multimin_fdfminimizer_iterate(minimizer);

// Quit loop if iteration failed
if (status != GSL_SUCCESS) break;

// Test for convergence

8. Calling an algorithm with and without automatic differentiation from the same program 11

status = gsl_multimin_test_gradient(minimizer->gradient, converged_gradient_norm);
}
while (status == GSL_CONTINUE && iter < 100);

// Free memory
gsl_multimin_fdfminimizer_free(minimizer);
gsl_vector_free(x);

// Return true if successfully minimized function, false otherwise
if (status == GSL_SUCCESS) {

std::cout << "Minimum found after " << iter << " iterations\n";
return true;

}
else {

std::cout << "Minimizer failed after " << iter << " iterations: "
<< gsl_strerror(status) << "\n";

return false;
}

}

The GSL interface requires three functions to be defined, each of which takes a vector of state variables x as
input: my function value, which returns the value of the function; my function gradient, which returns the
gradient of the function with respect to x; and my function value and gradient, which returns the value and
the gradient of the function. These functions are provided to GSL as function pointers (see above), but since GSL
is a C library, we need to use the ‘extern "C"’ specifier in their definition. Thus the function definitions would
be:

extern "C"
double my_function_value(const gsl_vector* x, void* params) {

State* state = reinterpret_cast<State*>(params);
return state->calc_function_value(x->data);

}

extern "C"
void my_function_gradient(const gsl_vector* x, void* params, gsl_vector* gradJ) {

State* state = reinterpret_cast<State*>(params);
state->calc_function_value_and_gradient(x->data, gradJ->data);

}

extern "C"
void my_function_value_and_gradient(const gsl_vector* x, void* params,

double* J, gsl_vector* gradJ) {
State* state = reinterpret_cast<State*>(params);

*J = state->calc_function_value_and_gradient(x->data, gradJ->data);
}

When the gsl multimin fdfminimizer iterate function is called, it chooses a search direction and performs
several calls of these functions to approximately minimize the function along this search direction. The this

pointer (i.e. the pointer to the State object), which was provided to the my function structure in the definition
of the minimize function above, is provided as the second argument to each of the three functions above. Unlike
in C, in C++ this pointer needs to be cast back to a pointer to a State type, hence the use of reinterpret cast.

That’s it! A call to minimize should successfully minimize well behaved differentiable multi-dimensional
functions. It should be straightforward to adapt the above to work with other minimization libraries.

8 Calling an algorithm with and without automatic differentiation from
the same program

The calc function value(const double*) member function defined in section 7 is sub-optimal in that it
simply calls the calc function value(const adouble*) member function, which not only computes the
value of the function, it also records the derivative information of all the operations involved. This information

8. Calling an algorithm with and without automatic differentiation from the same program 12

is then ignored. This overhead makes the function typically 2.5–3 times slower than it needs to be, although
sometimes (specifically for loops containing no trancendental functions) the difference between an algorithm coded
in terms of doubles and the same algorithm coded in terms of adoubles can exceed a factor of 10 (Hogan, 2014).
The impact on the computational speed of the entire minimization process depends on how many requests are made
for the function value only as opposed to the gradient of the function, and can be significant. We require a way
to avoid the overhead of Adept computing the derivative information for calls to calc function value(const

double*), without having to maintain two versions of the algorithm, one coded in terms of doubles and the other
in terms of adoubles. The three ways to achieve this are now described.

8.1 Function templates

The simplest approach is to use a function template for those functions that take active arguments, as demonstrated
in the following example:

#include "adept.h"
class State {
public:
...
template <typename xdouble>
xdouble calc_function_value(const xdouble* x);
...

};

// Example function definition that must be in a header file included
// by any source file that calls calc_function_value
template <typename xdouble>
inline
xdouble State::calc_function_value(const xdouble* x) {
xdouble y = 4.0;
xdouble s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

This takes the example from section 4 and replaces adouble by the template type xdouble. Thus,
calc function value can be called with either double or adouble arguments, and the compiler will compile
inline the inactive or active version accordingly. Note that the function template need not be a member function of
a class.

This technique is good if only a small amount of code needs to be differentiated, but for large models the
use of inlining is likely to lead to duplication of compiled code leading to large executables and long compile
times. The following two approaches do not have this drawback and are suitable for large codes.

8.2 Pausable recording

The second method involves compiling the entire code with the ADEPT RECORDING PAUSABLE preprocessor vari-
able defined, which can be done by adding an argument -DADEPT RECORDING PAUSABLE to the compler com-
mand line. This modifies the behaviour of mathematical operations performed on adouble variables: instead
of performing the operation and then storing the derivative information, it performs the operation and then only
stores the derivative information if the Adept stack is not in the “paused” state. We then use the following member
function definition instead of the one in section 7:

double State::calc_function_value(const double* x) {
stack_.pause_recording();
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
double J = value(calc_function_value(&active_x_[0]));
stack_.continue_recording();
return J;

}

8. Calling an algorithm with and without automatic differentiation from the same program 13

By pausing the recording for all operations on adouble objects, most of the overhead of storing derivative infor-
mation is removed. The extra run-time check to see whether the stack is in the paused state, which is carried out
by mathematical operations involving adouble objects, generally adds a small overhead. However, in algorithms
where most of the number crunching occurs in loops containing no trancendental functions, even if the stack is in
the paused state, the presence of the check can prevent the compiler from agressively optimizing the loop. In that
instance the third method may be preferable.

8.3 Multiple object files per source file

The third method involves compiling each source file containing functions with adouble arguments
twice. The first time, the code is compiled normally to produce an object file containing com-
piled functions including automatic differentiation. The second time, the code is compiled with the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag on the compiler command line. This instructs the adept.h

header file to turn off automatic differentiation by defining the adouble type to be an alias of the double type.
This way, a second set of object files are created containing overloaded versions of the same functions as the first
set but this time without automatic differentiation. These object files can be compiled together to form one ex-
ecutable. In the example presented in section 7, the calc function value function would be one that would
be compiled twice in this way, once to provide the calc function value(const adouble*) version and the
other to provide the calc function value(const double*) version. Note that any functions that do not in-
clude adouble arguments must be compiled only once, because otherwise the linker will complain about multiple
versions of the same function.

The following shows a Makefile from a hypothetical project that compiles two source files
(algorithm1.cpp and algorithm2.cpp) twice and a third (main.cpp) once:

Specify compiler and flags
CPP = g++
CPPFLAGS = -Wall -O3 -g
Normal object files to be created
OBJECTS = algorithm1.o algorithm2.o main.o
Object files created with no automatic differentiation
NO_AD_OBJECTS = algorithm1_noad.o algorithm2_noad.o
Program name
PROGRAM = my_program
Include-file location
INCLUDES = -I/usr/local/include
Library location and name, plus the math library
LIBS = -L/usr/local/lib -lm -ladept

Rule to build the program (typing "make" will use this rule)
$(PROGRAM): $(OBJECTS) $(NO_AD_OBJECTS)

$(CPP) $(CPPFLAGS) $(OBJECTS) $(NO_AD_OBJECTS) $(LIBS) -o $(PROGRAM)
Rule to build a normal object file (used to compile all objects in OBJECTS)
%.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -c $<
Rule to build a no-automatic-differentiation object (used to compile ones in NO_AD_OBJECTS)
%_noad.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -DADEPT_NO_AUTOMATIC_DIFFERENTIATION -c $< -o $@

There is a further modification required with this approach, which arises because if a header
file declares both the double and adouble versions of a function, then when compiled with
-DADEPT NO AUTOMATIC DIFFERENTIATION it appears to the compiler that the same function is declared twice,
leading to a compile-time error. This can be overcome by using the preprocessor to hide the adouble version if
the code is compiled with this flag, as follows (using the example from section 7):

#include "adept.h"
class State {
public:
...
double calc_function_value(const double* x);

protected:

9. Interfacing with software containing hand-coded Jacobians 14

#ifndef ADEPT_NO_AUTOMATIC_DIFFERENTIATION
adouble calc_function_value(const adouble* x);

#endif
...

};

A final nuance is that if the code contains an adouble object x, then x.value() will work fine in the
compilation when x is indeed of type adouble, but in the compilation when it is set to a simple double variable,
the value() member function will not be found. Hence it is better to use adept::value(x), which returns a
double regardless of the type of x, and works regardless of whether the code was compiled with or without the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag.

9 Interfacing with software containing hand-coded Jacobians

Often a complicated algorithm will include multiple components. Components of the code written in C or C++ for
which the source is available are straightforward to convert to using Adept, following the rules in section 4. For
components written in Fortran, this is not possible, but if such components have their own hand-coded Jacobian
then it is possible to interface Adept to them. More generally, in certain situations automatic differentiation is much
slower than hand-coding (see the Lax-Wendroff example in Hogan, 2014) and we may wish to hand-code certain
critical parts. In general the Jacobian matrix is quite expensive to compute, so this interfacing strategy makes most
sense if the component of the algorithm has a small number of inputs or a small number of outputs. A full working
version of the following example is given as “Test 3” in the test directory of the Adept package.

Consider the example of a radiative transfer model for simulating satellite microwave radiances at two
wavelengths, I and J, which takes as input the surface temperature Ts and the vertical profile of atmospheric
temperature T from a numerical weather forecast model. Such a model would be used in a data assimilation
system to assimilate the temperature information from the satellite observations into the weather forecast model.
In addition to returning the radiances, the model returns the gradient ∂I/∂Ts and the gradients ∂I/∂Ti for all height
layers i between 1 and n, and likewise for radiance J. The interface to the radiative transfer model is the following:

void simulate_radiances(int n, // Size of temperature array
// Input variables:
double surface_temperature,
const double* temperature,
// Output variables:
double radiance[2],
// Output Jacobians:
double dradiance_dsurface_temperature[2],
double* dradiance_dtemperature);

The calling function needs to allocate 2*n elements for the temperature Jacobian dradiance dtemperature to
be stored, and the stored Jacobian will be oriented such that the radiance index varies fastest.

Adept needs to be told how to relate the radiance perturbations δI and δJ, to perturbations in the input
variables, δTs and δTi (for all layers i). Mathematically, we wish the following relationship to be stored within the
Adept stack:

δI =
∂I
∂Ts

δTs +
n∑

i=1

∂I
∂Ti

δTi. (1)

This is achieved with the following wrapper function, which has adouble inputs and outputs and therefore can be
called from within other parts of the algorithm that are coded in terms of adouble objects:

void simulate_radiances_wrapper(int n,
const adouble& surface_temperature,
const adouble* temperature,
adouble radiance[2]) {

// Create inactive (double) versions of the active (adouble) inputs
double st = value(surface_temperature);
std::vector<double> t(n);
for (int i = 0; i < n; ++i) t[i] = value(temperature[i]);

10. Parallelizing Adept programs 15

// Declare variables to hold the inactive outputs and their Jacobians
double r[2];
double dr_dst[2];
std::vector<double> dr_dt(2*n);

// Call the non-Adept function
simulate_radiances(n, st, &t[0], &r[0], dr_dst, &dr_dt[0]);

// Copy the results into the active variables, but use set_value in order
// not to write any equivalent differential statement to the Adept stack
radiance[0].set_value(r[0]);
radiance[1].set_value(r[1]);

// Loop over the two radiances and add the differential statements to the Adept stack
for (int i = 0; i < 2; ++i) {

// Add the first term on the right-hand-side of Equation 1 in the text
radiance[i].add_derivative_dependence(surface_temperature, dr_dst[i]);
// Now append the second term on the right-hand-side of Equation 1. The third argument
// "n" of the following function says that there are n terms to be summed, and the fourth
// argument "2" says to take only every second element of the Jacobian dr_dt, since the
// derivatives with respect to the two radiances have been interlaced. If the fourth
// argument is omitted then relevant Jacobian elements will be assumed to be contiguous
// in memory.
radiance[i].append_derivative_dependence(temperature, &dr_dt[i], n, 2);

}
}

In this example, the form of add derivative dependence for one variable on the right-hand-side of the deriva-
tive expression has been used, and the form of append derivative dependence for an array of variables on
the right-hand-side has been used. As described in section 13, both functions have forms that take single variables
and arrays as arguments. Note also that the use of std::vector<double> rather than new double[n] ensures
that if simulate radiances throws an exception, the memory allocated to hold dr dt will be freed correctly.

10 Parallelizing Adept programs

Adept currently has limited built-in support for parallelization. If the algorithms that you wish to differentiate are
individually small enough to be treated by a single processor core, and you wish to differentiate multiple algorithms
independently (or the same algorithm but with multiple sets of inputs) then parallelization is straightforward. This
is because the global variable containing a pointer to the Adept stack uses thread-local storage. This means that if a
process spawns multiple threads (e.g. using OpenMP or Pthreads) then each thread can declare one adept::Stack
object and all adouble operations will result in statements being stored on the stack object specific to that thread.
The Adept package contains a test program test thread safe that demonstrates this approach in OpenMP.

If your problem is larger and you wish to use parallelism to speed-up the differentiation of a single large
algorithm then the build-in support is more limited. Provided your program and the Adept library were compiled
with OpenMP enabled (which is the default for the Adept library if your compiler supports OpenMP), the compu-
tation of Jacobian matrices will be parallelized. By default, the maximum number of concurrent threads will be
equal to the number of available cores, but this can be overridden with the set max jacobian threads member
function of the Stack class. Note that the opportunity for speed-up depends on the size of your Jacobian matrix:
for an m× n matrix, the number of independent passes through the stored data is min(m, n) and each thread treats
ADEPT MULTIPASS SIZE of them (see section 15.2), so the maximum number of threads that can be exploited is
min(m, n)/ADEPT MULTIPASS SIZE. Again, the test thread safe program can demonstrate the parallelization
of Jacobian calculations. Note, however, that if the jacobian function is called from within an OpenMP thread
(e.g. if the program already uses OpenMP with each thread containing its own adept::Stack object), then the
program is likely not to be able to spawn more threads to assist with the Jacobian calculation.

If you need Jacobian matrices then the ability to parallelize the calculation of them is useful since this
tends to be more computationally costly than recording the original algorithm. If you only require the tangent-
linear or adjoint calculations (equivalent to a Jacobian calculation with n = 1 or m = 1, respectively), then

11. Tips for the best performance 16

unfortunately you are stuck with single threading. It is intended that a future version of Adept will enable all
aspects of differentiating an algorithm to be parallelized with either or both of OpenMP and MPI.

11 Tips for the best performance

• If you are working with single-threaded code, or in a multi-threaded program but with only one
thread using a Stack object, then you can get slightly faster code by compiling all of your code with
-DADEPT STACK THREAD UNSAFE. This uses a standard (i.e. non-thread-local) global variable to point to
the currently active stack object, which is slightly faster to access.

• If you compile with the -g option to store debugging symbols, your object files and executable will be much
larger because every mathematical statement in the file will have the name of its associated templated type
stored in the file, and these names can be long. Once you have debugged your code, you may wish to omit
debugging symbols from production versions of the executable. There appears to be no performance penalty
associated with the debugging symbols, at least with the GNU C++ compiler.

• A high compiler optimization setting is recommended to inline the function calls associated with mathemat-
ical expressions. On the GNU C++ compiler, the -O3 setting is recommended.

• By default the Jacobian functions are compiled to process a strip of rows or columns of the Jacobian ma-
trix at once. The optimum width of the strip depends on your platform, and you may wish to change
it. To make the Jacobian functions process n rows or columns at once, recompile the Adept library with
-DADEPT MULTIPASS SIZE=n.

• If you suspect memory usage is a problem, you may investigate the memory used by Adept by simply sending
your Stack object to a stream, e.g. “std::cout << stack”. You may also use the memory() member
function, which returns the total number of bytes used. Further details of similar functions is given in section
12.

12 Member functions of the Stack class

This section describes the user-oriented member functions of the Stack class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used (for example, if only one
argument is supplied to the jacobian function below, then it will be executed as if called with a second argument
false). Some of these functions throw Adept exceptions, defined in section 14.

Stack(bool activate immediately = true) The constructor for the Stack class. Normally Stack ob-
jects are constructed with no arguments, which means that the object will attempt to make itself the currently
active stack by placing a pointer to itself into a global variable. If another Stack object is currently active,
then the present one will be fully constructed, left in the unactivated state, and an stack already active

exception will be thrown. If a Stack object is constructed with an argument “false”, it will be started in
an unactivated state, and a subsequent call to its member function activate will be needed to use it.

void new recording() Clears all the information on the stack in order that a new recording can be started.
Specifically this function clears all the differential statements, the list of independent and dependent variables
(used in computing Jacobian matrices) and the list of gradients used by the compute tangent linear and
compute adjoint functions. Note that this function leaves the memory allocated to reduce the overhead
of reallocation in the new recordings.

bool pause recording() Stops recording differential information every time an adouble statement is ex-
ecuted. This is useful if within a single program an algorithm needs to be run both with and with-
out automatic differentiation. This option is only effective within compilation units compiled with
ADEPT RECORDING PAUSABLE defined; if it is, the function returns true, otherwise it returns false. Fur-
ther information on using this and the following function are provided in section 8.2.

12. Member functions of the Stack class 17

bool continue recording() Instruct a stack that may have previously been put in a paused state to now
continue recording differential information as normal. This option is only effective within compilation units
compiled with ADEPT RECORDING PAUSABLE defined; if it is, the function returns true, otherwise it returns
false.

bool is recording() Returns false if recording has been paused with pause recording() and the code
has been compiled with ADEPT RECORDING PAUSABLE defined. Otherwise returns true.

void compute tangent linear() Perform a tangent-linear calculation (forward-mode differentiation) using
the stored differential statements. Before calling this function you need call the adouble::set gradient

or set gradients function (see section 13) on the independent variables to set the initial gradients, oth-
erwise the function will throw a gradients not initialized exception. This function is synonymous
with forward().

void compute adjoint() Perform an adjoint calculation (reverse-mode differentiation) using the stored
differential statements. Before calling this function you need call the adouble::set gradient or
set gradients function on the dependent variables to set the initial gradients, otherwise the function
will throw a gradients not initialized exception. This function is synonymous with reverse().

void independent(const adouble& x) Before computing Jacobian matrices, you need to identify the in-
dependent and dependent variables, which correspond to the columns and rows of he Jacobian, respectively.
This function adds x to the list of independent variables. If it is the nth variable identified in this way, the
nth column of the Jacobian will correspond to derivatives with respect to x.

void dependent(const adouble& y) Add y to the list of dependent variables. If it is the mth variable iden-
tified in this way, the mth row of the Jacobian will correspond to derivatives of y with respect to each of the
independent variables.

void independent(const adouble* x ptr, size t n) Add n independent variables to the list, which
must be stored consecutively in memory starting at the memory pointed to by x ptr.

void dependent(const adouble* y ptr, size t n) Add n dependent variables to the list, which must
be stored consecutively in memory starting at the memory pointed to by y ptr.

void jacobian(double* jacobian out) Compute the Jacobian matrix, i.e., the gradient of the m dependent
variables (identified with the dependent(...) function) with respect to the n independent variables (iden-
tified with independent(...). The result is returned in the memory pointed to by jacobian out, which
must have been allocated to hold m×n values. The result is stored in column-major order, i.e., the m diemen-
sion of the matrix varies fastest. If no dependents or independents have been identified, then the function
will throw a dependents or independents not identified exception. In practice, this function calls
jacobian forward if n ≤ m and jacobian reverse if n > m.

void jacobian forward(double* jacobian out) Compute the Jacobian matrix by executing n forward
passes through the stored list of differential statements; this is typically faster than jacobian reverse for
n ≤ m.

void jacobian reverse(double* jacobian out) Compute the Jacobian matrix by executing m reverse
passes through the stored list of differential statements; this is typically faster than jacobian forward

for n > m.

void clear gradients() Clear the gradients set with the set gradient member function of the adouble

class. This enables multiple adjoint and/or tangent-linear calculations to be performed with the same record-
ing.

void clear independents() Clear the list of independent variables, enabling a new Jacobian matrix to be
computed from the same recording but for a different set of independent variables.

12. Member functions of the Stack class 18

void clear dependents() Clear the list of dependent variables, enabling a new Jacobian matrix to be com-
puted from the same recording but for a different set of dependent variables.

size t n independents() Return the number of independent variables that have been identified.

size t n dependents() Return the number of dependent variables that have been identified.

size t n statements() Return the number of differential statements in the recording.

size t n operations() Return the total number of operations in the recording, i.e the total number of terms
on the right-hand-side of all the differential statements.

size t max gradients() Return the number of working gradients that need to be stored in order to perform a
forward or reverse pass.

std::size t memory() Return the number of bytes currently used to store the differential statements and the
working gradients. Note that this does not include memory allocated but not currently used.

size t n gradients registered() Each time an adouble object is created, it is allocated a unique index
that is used to identify its gradient in the recorded differential statements. When the object is destructed,
its index is freed for reuse. This function returns the number of gradients currently registered, equal to the
number of adouble objects currently created.

void print status(std::ostream& os = std::cout) Print the current status of the Stack object, such
as number of statements and operations stored and allocated, to the stream specified by os, or standard
output if this function is called with no arguments. Sending the Stack object to the stream using the “<<”
operator results in the same behaviour.

void print statements(std::ostream& os = std::cout) Print the list of differential statements to the
specified stream (or standard output if not specified). Each line corresponds to a separate statement, for
example “d[3] = 1.2*d[1] + 3.4*d[2]”.

bool print gradients(std::ostream& os = std::cout) Print the vector of gradients to the specified
stream (or standard output if not specified). This function returns false if no set gradient function
has been called to set the first gradient and initialize the vector, and true otherwise. To diagnose what
compute tangent linear and compute adjoint are doing, it can be useful to call print gradients

immediately before and after.

void activate() Activate the Stack object by copying its this pointer to a global variable that will be
accessed by subsequent operations involving adouble objects. If another Stack is already active, a
stack already active exception will be thrown. To check whether this is the case before calling
activate(), check that the active stack() function (described below) returns 0.

void deactivate() Deactivate the Stack object by checking whether the global variable holding the pointer
to the currently active Stack is equal to this, and if it is, setting it to 0.

bool is active() Returns true if the Stack object is the currently active one, false otherwise.

void start() This function was present in version 0.9 to activate a Stack object, since in that version they
were not constructed in an activated state. This function has now been deprecated and will always throw a
feature not available exception.

int max jacobian threads() Return the maximum number of OpenMP threads available for Jacobian cal-
culations. The number will be 1 if either the library was or the current source code is compiled without
OpenMP support (i.e. without the -fopenmp compiler and linker flag). (Introduced in Adept version 1.1.)

13. Member functions of the adouble object 19

int set max jacobian threads(int n) Set the maximum number of threads to be used in Jacobian calcu-
lations to n, if possible. A value of 1 indicates that OpenMP will not be used, while a value of 0 indicates
that the maximum available will be used. Returns the maximum that will be used, which may be fewer than
requested, e.g. 1 if the Adept library was compiled without OpenMP support. (Introduced in Adept version
1.1.)

The following non-member functions are provided in the adept namespace:

adept::Stack* active stack() Returns a pointer to the currently active Stack object, or 0 if there is none.

bool is thread unsafe() Returns true if your code has been compiled with
ADEPT STACK THREAD UNSAFE, false otherwise.

std::string version() Returns a string containing the version number of the Adept library (e.g. “1.1”).

std::string compiler version() Returns a string containing the compiler name and version used to com-
pile the Adept library.

std::string compiler flags() Returns a string containing the compiler flags used when compiling the
Adept library.

13 Member functions of the adouble object

This section describes the user-oriented member functions of the adouble class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used. Some of these functions
throw Adept exceptions, defined in section 14.

double value() Return the underlying double value.

void set value(double x) Set the value of the adouble object to x, without storing the equivalent differen-
tial statement in the currently active stack.

void set gradient(const double& gradient) Set the gradient corresponding to this adouble variable.
The first call of this function (for any adouble variable) after a new recording is made also initial-
izes the vector of working gradients. This function should be called for one or more adouble ob-
jects after a recording has been made but before a call to Stack::compute tangent linear() or
Stack::compute adjoint().

void get gradient(double& gradient) Set gradient to the value of the gradient correspond-
ing to this adouble object. This function is used to extract the result after a call to
Stack::compute tangent linear() or Stack::compute adjoint(). If the set gradient function
was not called since the last recording was made, this function will throw a gradients not initialized

exception. The function can also throw a gradient out of range exception if new adouble objects were
created since the first set gradient function was called.

void add derivative dependence(const adouble& r, const adouble& g) Add a differential state-
ment to the currently active stack of the form δl = g × δr, where l is the adouble object from which
this function is called. This function is needed to interface to software containing hand-coded Jacobians, as
described in section 9; in this case g is the gradient ∂l/∂r obtained from such software.

void append derivative dependence(const adouble& r, const adouble& g) Assuming that the
same adouble object has just had its add derivative dependence member function called, this
function appends + g × δr to the most recent differential statement on the stack. If the calling
adouble object is different, then a wrong gradient exception will be thrown. Note that multiple
append derivative dependence calls can be made in succession.

14. Exceptions thrown by the Adept library 20

void add derivative dependence(const adouble* r, const double* g,
size t n = 1, size t m stride = 1)

Add a differential statement to the currently active stack of the form δl =
∑n−1

i=0 m[i] × δr[i], where l

is the adouble object from which this function is called. If the g stride argument is provided, then the
index to the g array will be i × g stride rather than i. This is useful if the Jacobian provided is oriented
such that the relevant gradients for l are not spaced consecutively.

void append derivative dependence(const adouble* rhs, const double* g,
size t n = 1, size t g stride = 1)

Assuming that the same adouble object has just called the add derivative dependence function, this
function appends +

∑n−1
i=0 m[i]× δr[i] to the most recent differential statement on the stack. If the calling

adouble object is different, then a wrong gradient exception will be thrown. The g stride argument
behaves the same way as in the previous function described.

The following non-member functions are provided in the adept namespace:

double value(const adouble& x) Returns the underlying value of x as a double. This is useful to
enable x to be used in fprintf function calls. It is generally better to use adept::value(x)

rather than x.value(), because the former also works if you compile the code with the
ADEPT NO AUTOMATIC DIFFERENTIATION flag set, as discussed in section 8.3.

void set values(adouble* x, size t n, const double* x val) Set the value of the n adouble ob-
jects starting at x to the values in x val, without storing the equivalent differential statement in the currently
active stack.

void set gradients(adouble* x, size t n, const double* gradients) Set the gradients corre-
sponding to the n adouble objects starting at x to the n doubles starting at gradients. This has the
same effect as calling the set gradient member function of each adouble object in turn, but is more
concise.

void get gradients(const adouble* y, size t n, double* gradients) Copy the gradient of the n
adouble objects starting at y into the n doubles starting at gradients. This has the same effect as
calling the get gradient member function of each adouble object in turn, but is more concise. This
function can throw a gradient out of range exception if new adouble objects were created since the
first set gradients function or set gradient member function was called.

14 Exceptions thrown by the Adept library

Some functions in the Adept library can throw exceptions, and all of the exceptions that can be thrown are de-
rived from adept::autodiff exception, which is itself derived from std::exception. All these exceptions
indicate an error in the users code, usually associated with calling Adept functions in the wrong order.

An exception-catching implementation that takes different actions depending on whether a specific Adept
exception, a general Adept exception, or a non-Adept exception is thrown might have the following form:

try {
adept::Stack stack;
// ... Code using the Adept library goes here ...

}
catch (adept::stack_already_active& e) {

// Catch a specific Adept exception
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (adept::autodiff_exception& e) {

// Catch any Adept exception not yet caught
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (...) {

15. Configuring the behaviour of Adept 21

// Catch any exceptions not yet caught
std::cerr << "An error occurred" << std::endl;
// ... any further actions go here ...

}

All exceptions implement the what() member function, which returns a const char* containing an error mes-
sage. The following exceptions can be thrown, and all are in the adept namespace:

gradient out of range This exception can be thrown by the adouble::get gradient member function if
the index to its gradient is larger than the number of gradients stored. This can happen if the adouble object
was created after the first adouble::set gradient call since the last Stack::new recording call. The
first adouble::set gradient call signals to the Adept stack that the main algorithm has completed and
so memory can be allocated to store the gradients ready for a forward or reverse pass through the differential
statements. If further adouble objects are created then they may have a gradient index that is out of range
of the memory allocated.

gradients not initialized This exception can be thrown by functions that require the list of working
gradients to have been initialized (particularly the functions Stack::compute tangent linear and
Stack::compute adjoint). This initialization occurs when adouble::set gradient is called.

stack already active This exception is thrown when an attempt is made to make a particular Stack object
“active”, but there already is an active stack in this thread. This can be thrown by the Stack constructor or
the Stack::activate member function.

dependents or independents not identified This exception is thrown when an attempt is made to com-
pute a Jacobian but the independents and/or dependents have not been identified.

wrong gradient This exception is thrown by the adouble::append derivative dependence if
the adouble object that it is called from is not the same as that of the most recent
adouble::add derivative dependence.

non finite gradient This exception is thrown if the users code is compiled with the preprocessor variable
ADEPT TRACK NON FINITE GRADIENTS defined, and a mathematical operation is carried out for which the
derivative is not finite. This is useful to locate the source of non-finite derivatives coming out of an algorithm.

feature not available This exception is thrown by deprecated functions, such as Stack::start().

15 Configuring the behaviour of Adept

The behaviour of the Adept library can be changed by defining one or more of the Adept preprocessor variables.
This can be done either by editing the adept.h file and uncommenting the relevant #define lines in sections 1 or
2 of the file, or by compiling your code with -Dxxx compiler options (replacing xxx by the relevant preprocessor
variable. There are two types of preprocessor variable: the first types only apply to the compilation of user code,
while the second types require the Adept library to be recompiled.

15.1 Modifications not requiring a library recompile

The preprocessor variables that apply only to user code and do not require the Adept library to be recompiled are
as follows:

ADEPT STACK THREAD UNSAFE If this variable is defined, the currently active stack is stored as a global variable
but is not defined to be “thread-local”. This is slightly faster, but means that you cannot use multi-threaded
code with separate threads holding their own active Stack object. Note that although defining this variable
does not require a library recompile, all source files that make up a single executable must be compiled with
this option (or all not be).

15. Configuring the behaviour of Adept 22

ADEPT RECORDING PAUSABLE This option enables an algorithm to be run both with and without automatic
differentiation from within the same program via the functions Stack::pause recording() and
Stack::continue recording(). Note that although defining this variable does not require a library
recompile, all source files that make up a single executable must be compiled with this option (or all not be).
Further details on this option are provided in section 8.2.

ADEPT NO AUTOMATIC DIFFERENTIATION This option turns off automatic differentiation by treating adouble

objects as double. It is useful if you want to compile one source file twice to produce versions with and
without automatic differentiation. Further details on this option are provided in section 8.3.

ADEPT TRACK NON FINITE GRADIENTS Often when an algorithm is first converted to use an operator-
overloading automatic differentiation library, the gradients come out as Not-a-Number or Infinity. The rea-
son is often that the algorithm contains operations for which the derivative is not finite (e.g.

√
a for a = 0),

or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(−1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. By defining this preprocessor variable, a non finite gradient exception
will be thrown if any operation results in a non-finite derivative. Running the program within a debugger
(and ensuring that the exception is not caught within the program) enables the offending line to be identified.

ADEPT INITIAL STACK LENGTH This preprocessor variable is set to an integer, and is used as the default initial
amount of memory allocated for the recording, in terms of the number of statements and operations.

ADEPT REMOVE NULL STATEMENTS If many variables in your code are likely to be zero then redundant operations
will be added to the list of differential statements. For example, the assignment a = b×c with active variables
b and c both being zero results in the differential statement δa = 0×δb+0×δc. This preprocessor variable
checks for zeros and removes terms on the right-hand-side of differential statements if it finds them. In this
case it would put δa = 0 on the stack instead. This option slows down the recording stage, but speeds up the
subsequent use of the recorded stack for adjoint and Jacobian calculations. The speed up of the latter is only
likely to exceed the slow down of the former if your code contains many zeros. For most codes, this option
causes a net slow down.

ADEPT COPY CONSTRUCTOR ONLY ON RETURN FROM FUNCTION If copy constructors for adouble objects are
only used in the return values for functions, then defining this preprocessor variable will lead to slightly
faster code, because it will be assumed that when a copy constructor is called, the index to its gradient can
simply be copied because the object being copied will shortly be destructed (otherwise communication with
the Stack object is required to unregister one and immediately register the other). You need to be sure that
the code being compiled with this option does not invoke the copy constructor in any other circumstances.
Specifically, it must not include either of these constructions: “adouble x = y;” or “adouble x(y);”,
where y is an adouble object. If it does, then strange errors will occur.

15.2 Modifications requiring a library recompile

The preprocessor variables that require the Adept library to be recompiled are as follows. Note that if these
variables are used they must be the same when compiling both the library and the user code. This is safest to
implement by editing section 2 of the adept.h header file.

ADEPT FLOATING POINT TYPE If you want to compile Adept to use a precision other than double, define
this preprocessor variable to be the floating-point type required, e.g. float or long double. To
use from the compiler command-line, use the argument -DADEPT FLOATING POINT TYPE=float or
-DADEPT FLOATING POINT TYPE="long double".

ADEPT STACK STORAGE STL Use the C++ standard template library vector or valarray classes for storing the
recording and the list of gradients, rather than dynamically allocated arrays. In practice, this tends to slow
down the code.

16. Frequently asked questions 23

ADEPT MULTIPASS SIZE This is set to an integer, invariably a power of two, specifying the number of rows or
columns of a Jacobian that are calculated at once. The optimum value depends on the platform and the
capability of the compiler to optimize loops whose length is known at compile time.

ADEPT MULTIPASS SIZE ZERO CHECK This is also set to an integer; if it is greater than
ADEPT MULTIPASS SIZE, then the Stack::jacobian reverse function checks gradients are non-
zero before using them in a multiplication.

ADEPT THREAD LOCAL This can be used to specify the way that thread-local storage is declared by your com-
piler. Thread-local storage is used to ensure that the Adept library is thread-safe. By default this variable
is not defined initially, and then later in adept.h it is set to declspec(thread) on Microsoft Visual
C++, an empty declaration on Mac (since thread-local storage is not available on many Mac platforms) and
thread otherwise (appropriate for at least the GCC, Intel, Sun and IBM compilers). To override the default

behaviour, define this variable yourself in section 2 of adept.h.

16 Frequently asked questions

Why are all the gradients coming out of the automatic differentiation zero? You have almost certainly omit-
ted or misplaced the call of the adept::Stack member function “new recording()”. It should be placed
after the independent variables in the algorithm have been initialized, but before any subsequent calcula-
tions are performed on these variables. If it is omitted or placed before the point where the independent
variables are initialized, the differential statements corresponding to this initialization (which are all of the
form δx = 0), will be placed in the list of differential statements and will unhelpfully set to zero all your
gradients right at the start of a forward pass (resulting from a call to forward()) or set them to zero right at
the end of a reverse pass (resulting from a call to reverse()).

Why are the gradients coming out of the automatic differentiation NaN or Inf (even though the value is correct)?
This can occur if the algorithm contains operations for which the derivative is not finite (e.g.

√
a for a = 0),

or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(−1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. The simplest way to locate the offending statement is to recompile your code
with the -g option and the ADEPT TRACK NON FINITE GRADIENTS preprocessor variable set (see section
15.1). Run the program within a debugger and a non finite gradient exception will be thrown, which if
not caught within the program will enable you to locate the line in your code where the problem originated.
You may need to turn optimizations off (compile with -O0) for the line identification to be accurate. Another
approach is to add the following in a C++ source file:

#include <fenv.h>
int _feenableexcept_status = feenableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW);

This will cause a floating point exception to be thrown when a NaN or Inf is generated, which can again be
located in a debugger.

Why are the gradients coming out of the automatic differentiation wrong? Before suspecting a bug in Adept,
note that round-off error can lead to incorrect gradients even in hand-coded differential code. Consider the
following:

int main() {
Stack stack;
adouble a = 1.0e-26, b;
stack.new_recording();
b = sin(a) / a;
b.set_gradient(1.0);
stack.compute_adjoint();
std::cout << "a=" << a << ", b=" << b << ", db/da=" << a.get_gradient() << "\n";

}

16. Frequently asked questions 24

We know that near a=0 we should have b=1 and the gradient should be 0. But running the program above
will give a gradient of 1.71799e+10. If you hand-code the gradient, i.e.

double A = 1.0e-26;
double dB_dA = cos(A)/A - sin(A) / (A*A);

you will you will also get the wrong gradient. You can see that the answer is the difference of two very large
numbers and so subject to round-off error. This example is therefore not a bug of Adept, but a limitation of
numerical gradients. To check this, try compiling your code using either the ADOL-C or CppAD automatic
differentiation tools; I have always found these tools to give exactly the same gradient as Adept. Unfortu-
nately, round-off error can build up over many operations to give the wrong result, so there may not be a
simple solution in your case.

Can Adept reuse a stored tape for multiple runs of the same algorithm but with different inputs? No. Adept
does not store the full algorithm in its stack (as ADOL-C does in its tapes, for example), only the derivative
information. So from the stack alone you cannot rerun the function with different inputs. However, rerunning
the algorithm including recomputing the derivative information is fast using Adept, and is still faster than
libraries that store enough information in their tapes to enable a tape to be reused with different inputs. It
should be stressed that for any algorithm that includes different paths of execution (“if” statements) based
on the values of the inputs, such a tape would need to be rerecorded anyway. This includes any algorithm
containing a look-up table.

Why does my code crash with a segmentation fault? This means it is trying to access a memory address not
belonging to your program, and the first thing to do is to run your program in a debugger to find out at what
point in your code this occurs. If it is in the adept::aReal constructor (note that aReal is synonymous
with adouble), then it is very likely that you have tried to initiate an adept::adouble object before
initiating an adept::Stack object. As described in section 5.1, there are good reasons why you need to
initialize the adept::Stack object first.

How can I interface Adept with a matrix library such as Eigen? Unfortunately the use of expression templates
in Adept means that it does not work optimally (if it works at all) with matrix libraries that use expression
templates. However, I am working on a combined library that would combine array functionality with
automatic differentiation, which will hopefully be released as version 2.0 of Adept.

Do you have plans to enable Adept to produce Hessian matrices? Not in the near future; adding array function-
ality is a higher priority at the moment. However, if your objective function J(x) (also known as a cost func-
tion or penalty function) has a quadratic dependence on each of the elements of y(x), where y is a nonlinear
function of the independent variables x, then the Hessian matrix ∇2

xJ can be computed from the Jacobian
matrix H = ∂y/∂x. This is the essence of the Gauss-Newton and Levenberg-Marquardt algorithms. Con-
sider the optimization problem of finding the parameters x of nonlinear model y(x) that provides the closest
match to a set of “observations” yo in a least-squares sense. For maximum generality we add constraints
that penalize differences between x and a set of a priori values xa, as well as a regularization term. In this
case the objective function could be written as

J(x) = [y(x)− yo]T R−1 [y(x)− yo] + [x− xa]T B−1 [x− xa] + xTTx. (2)

Here, all vectors are treated as column vectors, R is the error covariance matrix of the observations, B is
the error covariance matrix of the a priori values, and T is a Twomey-Tikhonov matrix that penalizes either
spatial gradients or curvature in x. The Hessian matrix is then given by

∇2
xJ = HTR−1H + B−1 + T, (3)

which can be coded up using Adept to compute H. Each term on the right-hand-side of (3) has its corre-
sponding term in (2), so it is easy to work out what the Hessian would look like if only a subset of the terms
in (2) were present.

17. License for Adept software 25

17 License for Adept software

Version 1.1 of the Adept library is released under the Apache License, Version 2.0, which is available at http:
//www.apache.org/licenses/LICENSE-2.0. In short, this free-software license permits you to use the
library for any purpose, and to modify it and combine it with other software to form a larger work. If you choose,
you may release the modified software in either source code or object code form, so may use Adept in both open-
source software and non-free proprietary software. However, distributed versions must retain copyright notices and
also distribute both the information in the NOTICES file and a copy of the Apache License. Different license terms
may be applied to your distributed software, although they must include the conditions on redistribution provided
in the Apache License. This is a short summary; if in doubt, consult the text of the license.

In addition to the legally binding terms of the license, it is requested that:

• You cite Hogan (2014) in publications describing algorithms and software that make use of the Adept library.
While not not a condition of the license, this is good honest practice in science and engineering.

• If you make modifications to the Adept library that might be useful to others, you release your modifications
under the terms of the Apache License, Version 2.0, so that they are available to others and could also be
merged into a future official version of Adept.

Note that other source files in the Adept package used for demonstrating and benchmarking Adept are
released under the GNU all-permissive license†, which is specified at the top of all files it applies to.

Adept version 1.0 was released under the terms of the GNU General Public License (GPL) and so could
not be released as part of a larger work unless the entire work was released under the conditions of the GPL. It is
hoped that the switch to the Apache License will facilitate wider use of Adept.

References

Bell, B., 2007: CppAD: A package for C++ algorithmic differentiation. http://www.coin-or.org/CppAD

Liu, D. C., and Nocedal, J., 1989: On the limited memory method for large scale optimization. Math. Programming
B, 45, 503–528.

Gay, D. M., 2005: Semiautomatic differentiation for efficient gradient computations. In Automatic Differentiation:
Applications, Theory, and Implementations, H. M. Bücker, G. F. Corliss, P. Hovland, U. Naumann and B. Norris
(eds.), Springer, 147–158.

Griewank, A., Juedes, D., and Utke, J., 1996: Algorithm 755: ADOL-C: a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw., 22, 131–167.

Hogan, R. J., 2014: Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans.
Math. Softw., 40, 26:1-26:16.

†The GNU all-permissive license reads: Copying and distribution of this file, with or without modification, are permitted in any medium
without royalty provided the copyright notice and this notice are preserved. This file is offered as-is, without any warranty.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.coin-or.org/CppAD

	Introduction
	What functionality does Adept provide?
	Installing Adept and compiling your code to use it
	Unix-like platforms
	Non-Unix platforms, and compiling Adept applications without linking to an external library

	Code preparation
	Applying reverse-mode differentiation
	Set-up stack to record derivative information
	Initialize independent variables and start recording
	Perform calculations to be differentiated
	Perform reverse-mode differentiation
	Extract the final gradients

	Computing Jacobian matrices
	Real-world usage: interfacing Adept to a minimization library
	Calling an algorithm with and without automatic differentiation from the same program
	Function templates
	Pausable recording
	Multiple object files per source file

	Interfacing with software containing hand-coded Jacobians
	Parallelizing Adept programs
	Tips for the best performance
	Member functions of the Stack class
	Member functions of the adouble object
	Exceptions thrown by the Adept library
	Configuring the behaviour of Adept
	Modifications not requiring a library recompile
	Modifications requiring a library recompile

	Frequently asked questions
	License for Adept software

